Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier
نویسندگان
چکیده
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
منابع مشابه
Profiling Solute Carrier Transporters in the Human Blood-Brain Barrier
The neuroprotective function of the blood-brain barrier (BBB) presents a major challenge for drug delivery to the central nervous system (CNS). Critical to this function, BBB membrane transporters include the ATP-binding cassette (ABC) transporters, which limit drug penetration across the BBB, and the less-well-studied solute carrier (SLC) transporters. In this work, expression profiling of 359...
متن کاملExpression profiling of the solute carrier gene family in the mouse brain.
The solute carrier (Slc) superfamily is a major group of membrane transport proteins present in mammalian cells. Although Slc transporters play essential and diverse roles in the central nervous system, the localization and function of the vast majority of Slc genes in the mammalian brain are largely unknown. Using high-throughput in situ hybridization data generated by the Allen Brain Atlas, w...
متن کاملIdentification and expression profiling of blood-brain barrier membrane proteins.
Blood-brain barrier (BBB) membrane proteins play crucial roles in the proper functioning of the BBB as well as in disease progression. Previously, we developed a novel approach for identifying membrane proteins expressed at the BBB, which we referred to as multiplex expression cloning. In this study, the proteome coverage of the multiplex expression cloning approach was expanded to allow the id...
متن کاملDeficient Expression of Bruton's Tyrosine Kinase in Monocytes from X-Linked Agammaglobulinemia as Evaluated by a Flow Cytometric Analysis and its Clinical Application to Carrier Detection
Background: The B-cell defect in X-linked agammaglobulinemia (XLA) is caused by mutations in the gene for Bruton's tyrosine kinase (BTK). BTK mutations result in deficient expression of BTK protein in peripheral blood monocytes. Methods: Using the anti-BTK monoclonal antibody (48-2H), a flow cytometric analysis of intra cytoplasmic BTK protein expression in monocytes was performed to identify I...
متن کاملThe Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes
Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012